
BORDER COLLISION OF NON-HYPERBOLIC

FIXED POINTS

A. Colombo F. Dercole

DEI, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
(e-mail: alessandro.colombo@polimi.it, fabio.dercole@polimi.it).

Abstract: We report novel results on three codimension-two bifurcations in nonsmooth
systems, namely the border-fold, border-flip, and border-Neimark-Sacker. These
results, obtained in the discrete-time framework, are easily applicable in the analysis
of Poincaré maps of periodic solutions in continuous-time. Three models, taken from
different fields of science and engineering, are then briefly described and used as test
benches for the theoretical results.
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1. INTRODUCTION

Knowledge of the geometry of bifurcation curves
around codimension-two points is a key ingredient
to efficiently derive complex bifurcation diagrams.
In the domain of smooth dynamical systems,
the unfolding of the most common codimension-
two points is well known (see, e.g., [Kuznetsov,
2004]), and this knowledge is exploited in con-
tinuation software for the automatic switching of
bifurcation branches at these points (see, e.g.,
[Dhooge et al., 2002, Meijer et al., 2009]). With
the advent of new continuation packages for non-
smooth systems [Dercole and Kuznetsov, 2005,
Thota and Dankowicz, 2008], new effort is re-
quired to extend these results to the discontin-
uous case (see [di Bernardo et al., 2008, Kowal-
czyk and di Bernardo, 2005, Kowalczyk et al.,
2006] for an overview of the subject). In this
paper, we collect some results on border colli-
sion bifurcations of non-hyperbolic fixed points.
This is a codimension-two bifurcation that takes
place when a non-hyperbolic fixed point of a
discrete-time nonsmooth system hits a disconti-
nuity boundary separating smooth regions of the
state space. Rather than aiming at a complete
unfolding of the these bifurcations, which would
require specific assumptions on the system’s equa-

tions on both sides of the involved boundary
[di Bernardo et al., 2008], we concentrate on the
geometric features that are common to all scenar-
ios. These results apply as well to codimension-
two bifurcations of non-hyperbolic periodic orbits
in continuous-time systems (hybrid, impacting,
piecewise smooth, etc.), through the analysis of
the corresponding Poincaré maps.

In what follows, we report the theoretical results
and a sketch of the procedure to derive them, then
we analyse three applications. Complete proofs
are going to be detailed in a full length paper.

2. CODIMENSION-TWO NORMAL FORMS

Smooth systems theory tells us that a fixed point
can be non-hyperbolic in three generic ways,
which are distinguished based on the eigenvalues
of the Jacobian of the system’s map evaluated
at the fixed point. Generically, if one eigenvalue
is equal to 1 we have a fold bifurcation, if it is
equal to −1 we have a flip bifurcation, if two
complex conjugate eigenvalues are on the unit
circle we have a Neimark-Sacker bifurcation. In
the case of a nonsmooth system having a fixed
point in the interior of a smooth region S, this



scenario is unchanged. Consequently, when a non-
hyperbolic fixed point of the nonsmooth system
hits the boundary of S, we can distinguish three
cases, a border-fold, a border-flip, and a border-
Neimark-Sacker bifurcation.

To understand the local geometry of bifurcation
curves around these codimension-two points, we
proceed through three steps. First, we reduce the
map of the nonsmooth system, restricted to region
S, to normal form. This is done in a similar
way as for smooth systems by considering the
map restricted to a parameter-dependent centre
manifold, which is one-dimensional in the fold and
flip cases, and two-dimensional in the Neimark-
Sacker case, and reducing the terms in the Taylor
expansion of the map with appropriate changes
of variable and parameter (i.e, see [Kuznetsov,
2004]). While the system’s map in S has the form

z 7→ F (z, α), z ∈ R
n, α ∈ R

2,

where z is the state vector and α is the parameter
vector, its restriction to the centre manifold has
the form

u 7→ f(u, α), (1)

where u is a one- or two-dimensional vector in the
centre manifold. The normal form, say

v 7→ fNF (v, β), (2)

is then obtained through changes of variable and
parameters. Since all parameter changes are quasi-
identities, β = 0 when α = 0. We are free
to assume that the codimension-two bifurcation
occurs when α = 0, and that when α = 0 the fixed
point is located at z = 0. Then generically near
α = 0 the centre manifold transversally intersects
the discontinuity boundary in a neighbourhood of
z = 0. This allows us to write the restriction of the
discontinuity boundary to the centre manifold as
the zero-set of a function h(u, α) with nonsingular
Jacobian at (0, 0), that is,

Σ = {u : h(u, α) = 0} (3)

with hu(0, 0) 6= 0.

As a second step, we find the expression of the
discontinuity boundary (3) in the new variables
and parameters, i.e.,

Σ = {v : hNF(v, β) = 0}. (4)

Finally, third step, we analyse the interaction of
the normal form map (2) with the discontinuity
boundary (4), and we find local asymptotics for
the bifurcation curves emanating from β = 0 in
terms of (β1, β2)-expansions.

On the whole, we obtain the following results for
the three cases, where the superscript 0 stands for
evaluation at (u, α) = (0, 0):
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Fig. 1. Border-fold bifurcation. Bifurcation curves:
LP, fold (limit point, red); BCs, border col-
lision of v̄s (green), BCu, border collision of
v̄u (blue). Region labels: 0, no fixed point in
V −(β) = {v : hNF(v, β) < 0}; 1, v̄s (left) or
v̄u (right) is the only fixed point in V −(β); 2,
both fixed points v̄s,u lie in V −(β).

2.1 Fold case

Assume that f(0, 0) = 0 (fixed point condition),
that fu(0, 0) = 1 (fold condition), and that the
following genericity conditions are met
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Then, locally to β = 0, there are a fold curve of
equation

β1 = 0, β2 ≷ 0 (5)

and a border collision curve of equation

±
√
−sβ1 ' σβ2

(0)β2, (6)

where s = ±1 is a coefficient of the normal form
[Kuznetsov, 2004],

σβ2
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and the inequality sign in (5) depends on the
signs of σβ2

(0) and h0
u. Equation (6) describes a

parabola whose two branches correspond to the
border collisions of the two fixed points v̄s (stable)
and v̄u (unstable) of map (1), that appear at the
fold bifurcation. The signs of s, σβ2

(0), and h0
u

depend on functions f and h and give place to
eight possible cases, only two of which (shown
in Fig. 1) have qualitatively different bifurcation
diagrams.

2.2 Flip case

Assume that f(0, α) = 0 for small ‖α‖ (fixed point
condition), that fu(0, 0) = −1 (flip condition),
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Fig. 2. Border-flip bifurcation. Bifurcation curves:
PD, flip (period doubling, red); BCs,u

1 , border
collision of the fixed point v = 0 (stable
and unstable branches, blue); BCs,u

2 , border
collision of the stable or unstable period-two
fixed point. Region labels: 0, no fixed point in
V −(β) = {v : hNF(v, β) < 0}; 1, v = 0 is the
only fixed point in V −(β); 2, the fixed point
v = 0 coexists in V −(β) with the period-two
fixed point.

and that the following genericity conditions are
met
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Then, locally to β = 0, there are a flip curve of
equation

β1 = 0, β2 ≷ 0, (7)

a border collision curve of the period-one fixed
point of equation

β2 = 0,

and a border collision of the period-two fixed
points of equation

±
√
sβ1 ' σβ2

(0)β2, (8)

where s = ±1,

σβ2
(0) = −

√
|c(0)|
h0

u

with c(0) = (1/4)(f0
uu)2 + (1/6)f0

uuu, and the
inequality sing in (7) depends on the signs of
σβ2

(0) and h0
u. The signs of s, σβ2

(0), and h0
u

depend on functions f and h. Overall we have
two qualitatively different portraits, depicted in
Fig. 2.

2.3 Neimark-Sacker case

Assume that f(0, α) = 0 for small ‖α‖ (fixed point
condition), and that the 2×2 Jacobian fu(0, 0) has
eigenvalues λ(0) and λ̄(0) (the overbar stands for
complex conjugation), with

λ(α) = (1 + g(α))eiθ(α),
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Fig. 3. Border-NS bifurcation. Bifurcation curves:
NS, Neimark-Sacker (red); BCs,u, border col-
lision of the fixed point v = 0 (stable and
unstable branches, blue); GRs,u, grazing of
the stable or unstable torus (green). Region
labels: 0, no fixed point or invariant curve in
V −(β) = {v : hNF(v, β) < 0}; 1, v = 0 is a
fixed point in V −(β) and there is no invariant
curve, or part of it does not lie in V −(β); 2,
both the fixed point v = 0 and the invariant
curve lie in V −(β).

where g(0) = 0 and θ(0) = θ0 (Neimark-Sacker,
NS, condition). Moreover, assume the following
genericity conditions

(C.1) h0
u 6= 0,

(C.2) eikθ0 6= 1 for k = 1, 2, 3, 4,
(C.3) the NS is super- or subcritical at α = 0,
(C.4) h0

α1
gα2

(0) 6= h0
α2
gα1

(0).

Then, there are a Neimark-Sacker curve of equa-
tion

β1 = 0, β2 ≷ 0 (9)

and a border collision curve of the fixed point of
equation

β2 = 0,

while the invariant torus grazes the discontinuity
boundary along a curve of equation

√
−β1/a(0) ' σβ2

(0)β2. (10)

Here, a(0) is a coefficient of the NS normal form
and

σβ2
(0) = − 1

2h0
uRe(q(0)eiϕh)

,

where

ϕh = arctan2π

(
h0

uRe(q(0)),−h0
uIm(q(0))

)
,

and vector q(0) is the right eigenvector of the
Jacobian of (1) at α = u = 0, associated with λ(0)
(normalised so that the scalar product with the
left eigenvector associated with λ̄(0) is 1). Once
again, the inequality sign in (9) depends on the
sings of a(0) and σβ2

(0) which, in turn, depend
on functions f and h, and give place to the two
qualitatively different portraits depicted in Fig. 3.



3. EXAMPLES

We now present three examples, one for each
of the three codimension-two bifurcations anal-
ysed in the previous section. The three examples
deal with different classes of nonsmooth systems
(an impacting system, a hybrid system, and a
piecewise smooth system) and describe interest-
ing applications in different fields of science and
engineering (ecology, social sciences, and mechan-
ics). The three systems we analyse are continuous
time but, as we wrote before, the analysis in a
neighbourhood of a periodic solution can be cast
into the discrete-time framework by recurring to
Poincaré maps.

An impacting model of forest fires

For an example of border-fold bifurcation, we con-
sider the forest fire impacting model presented
in [Dercole and Maggi, 2005, Maggi and Ri-
naldi, 2006]. The model describes the vegetational
growth with the following two (smooth) ODEs:

Ḃ = rBB

(
1− B

KB

)
− αBT,

Ṫ = rTT

(
1− T

KT

)
,

one for the surface layer (bush, B) and one for
the upper layer (trees, T ). Fire episodes are rep-
resented by instantaneous events (impacts), that
occur when the biomasses (B, T ) of the two layers
reach one of three specified impacting boundaries:
a bush ignition threshold ρBKB triggering bush-
only fires that map the bush biomass to λBρBKB ,
0 < λB , ρB < 1; a tree ignition threshold ρTKT

triggering trees-only fires that map the trees
biomass to λT ρTKT , 0 < λT , ρT < 1; and the
segment connecting points (σBKB , ρTKT ) and
(ρBKB , σTKT ), 0 < σB < ρB , 0 < σT < ρT ,
triggering mixed fires with post-fire conditions
suitably assigned as a function of pre-fire con-
ditions (see [Maggi and Rinaldi, 2006] for more
details).

For the parameter setting r1 = 0.375, r2 =
0.0625, α = 0.43, KB = KT = 1, ρB = 0.85,
ρT = 0.93, λB = 0.03, λT = 0.01, σB =
0.61, σT = 0.3 (corresponding to Mediterranean
forests), the system is characterised by a globally
stable period-one cycle composed of a growth
orbit and a mixed fire. Numerical continuation (by
means of Auto07p [Doedel et al., 2007]) of the
cycle in the parameter plane (ρB , ρT ) identifies
two (codimension-one) bifurcations: a fold (red
curve in Fig. 4) and a grazing of the growth orbit
with the bush ignition threshold (blue curve).
The two curves merge together at the border-fold
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Fig. 4. Example of border-fold bifurcation. Bi-
furcation curves: fold (red); border collision
of the period-one stable cycle (blue); bor-
der collision of the period-one unstable cycle
(green). Region labels as in Fig. 1.

bifurcation (black) point and, as predicted, the
grazing bifurcation of the unstable cycle involved
in the fold (green curve) emanates tangentially
from the codimension-two bifurcation point.

A hybrid model of two-party democracies

For an example of border-flip bifurcation, we
consider the hybrid model presented in [Colombo
and Rinaldi, 2008] for describing the dynamics of
two-party democracies. The model describes the
evolution of the size of two lobbies (of sizes LD

and LR), one associated to each party (parties
D and R, respectively), and assumes that the
individuals belonging to the lobby of the party at
the government erode the welfare (W ) at a rate
proportional to the size of the lobby; a lobby can
grow only as long as its party is at the government,
and decays otherwise; a small fraction of the
lobbyists not at the government defect and switch
to the other lobby; elections are held once every T
years, and people vote for the party that has the
least damaging lobby at the time of the elections.
Altogether, the dynamics is captured by two sets
of ODEs, namely

Ẇ = r(1−W − aDLD)W,

L̇D = (eDaDW − dD)LD + kRLR,

L̇R = (−dR − kR)LR,

when the D-party is at the government, and

Ẇ = r(1−W − aRLR)W,

L̇D = (−dD − kD)LD,

L̇R = (eRaRW − dR)LR + kDLD,
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Fig. 5. Example of border-flip bifurcation. Bifur-
cation curves: flip (red); border collision of
the period-one cycle (blue); border collision
of the period-two cycle (green). Region labels
as in Fig. 2.

when the R-party is at the government. Here,
r is the intrinsic growth rate of the welfare, a
represents the aggressiveness of a lobby, e is the
recruitment coefficient of a lobby, and d and k are
respectively the rate at which individuals abandon
the lobbies or defect. In the region of the state
space where aDLD < aRLR (aDLD > aRLR)
the D-lobby (R-lobby) is less damaging and thus
wins the elections. The condition aDLD = aRLR

therefore defines the discontinuity boundary (see
[Colombo and Rinaldi, 2008] for more details).

In the (aD, T ) plane, with parameters aR = 1,
r = 0.2, eD = eR = 6, dD = dR = 1.8,
kD = kR = 0.06, the system has a very complex
bifurcation diagram (see for example Fig. 1 in
[Colombo and Rinaldi, 2008]). In particular, near
aD = 0.38, T = 3.2, a flip (red curve in Fig. 5) and
a border collision (blue curve) of a simple period-
2T cycle meet at the border-flip (black) point and,
as predicted by the analysis carried out in Sect. 4,
a border collision of the period-4T cycle (green
curve) emanates from the codimension-two point
tangentially to the flip curve.

A piecewise smooth model of railway wheelset
dynamics

For an example of border-NS bifurcation, we con-
sider a two degrees of freedom piecewise smooth
model of a suspended railway wheelset with dry
friction dampers, subject to a sinusoidal distur-
bance representing the deformations of the track.
The model is based on that presented in [Knudsen
et al., 1992, True and Asmund, 2003], where the
track deformation was not taken into account, and

its analysis will be published elsewhere. Since a
detailed explanation of the equations and param-
eters goes well beyond the scope of this paper,
here we only report the equations and describe
a few key parameters (see [Knudsen et al., 1992]
and [True and Asmund, 2003] for the details). The
model consists of the following piecewise smooth
equations:

ẋ1 = x̃2,

ẋ2 =
1

m
(−2Fx − 2Ksx̃1 − sign(x2)µ),

ẋ3 = x4,

ẋ4 =
1

I
(−2AFy),

where

x̃1 = x1 + a sin(ωt), x̃2 = x2 + aω cos(ωt),
µ = (µd(1− sech(αx̃2)) + µssech(αx̃2)),

Fx =
ξxFr

Ψξr
, Fy =

ξyFr

Φξr
,

Fr =




ξrC

(
1− Cξr

3µt

+
C2ξ2

r

27µ2
t

)
if Cξr < 3µt,

µt otherwise,

ξx =
x̃2

V
− x3, ξy =

Ax4

V
+
λx̃1

r0
,

ξr =

√(
ξx
Ψ

)2

+

(
ξy
Φ

)2

.

Here ω = 2πV/l, a and l are the amplitude and
wavelength of the sinusoidal disturbance, V is the
speed of the wheelset, and λ measures the conicity
of the wheels. The system’s state space is therefore
partitioned in four regions, depending on the signs
of x2 and of Cξr − 3µt, so that x2 = 0 and
Cξr = 3µt define two discontinuity boundaries.

The system’s dynamics was studied, with TC-
HAT [Thota and Dankowicz, 2008], in the (V, λ)
plane, with the following values of the parameters:
m = 1022, Ks = 1e6, I = 678, A = 0.75,
a = 0.001, µd = 1000, α = 50, µs = 1200,
Ψ = 0.54219, Φ = 0.60252, C = 6.5630e6,
µt = 10000, r0 = 0.4572, l = 10. For large
values of V , a grazing with the boundary x2 = 0
and a NS take place (blue and red in Fig. 6),
and meet at the border-NS (black) point. Then,
by systematically evaluating 1000 iterations (after
transient) of the Poincaré map of the torus on
a suitable cross-section, and by continuing the
line on which the obtained torus image grazes
the discontinuity boundary induced on the cross-
section by the system’s dynamics, we were able
to trace an approximation of the grazing curve
of the torus (green in Fig. 6). As predicted, the
curve emanates from the codimension-two point
tangentially to the NS curve.

4. CONCLUSIONS

We have presented some general results on the ge-
ometry of bifurcation curves around three codimension-
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Fig. 6. Example of border-NS bifurcation. Bifur-
cation curves: Neimark-Sacker (red); border
collision of the period-one cycle (blue); bor-
der collision of the torus (green). Region la-
bels as in Fig. 3.

two bifurcations in nonsmooth systems, namely
the border-fold, the border-flip, and the border-
Neimark-Sacker. Rather than aiming at the com-
plete unfolding of the dynamics of a particular
class of nonsmooth systems, we have focused on
those results which are general to all scenarios.
Our approach applies to continuous-time as well
as discrete-time systems, and basically consists
of the analysis of a discrete-time (Poincaré) map
defined only on one side of a boundary in its state
space.

Of course, the weakness of this approach is that
it cannot provide the complete unfolding of the
bifurcation, but its power resides in its generality:
as shown in the three examples that we have
reported, it applies to a very broad class of nons-
mooth systems and it may be relevant in various
fields of science and engineering.
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